
Package: forecastHybrid (via r-universe)
September 12, 2024

Title Convenient Functions for Ensemble Time Series Forecasts

Version 5.0.19

Date 2020-08-27

Description Convenient functions for ensemble forecasts in R combining
approaches from the 'forecast' package. Forecasts generated
from auto.arima(), ets(), thetaf(), nnetar(), stlm(), tbats(),
snaive() and arfima() can be combined with equal weights,
weights based on in-sample errors (introduced by Bates &
Granger (1969) <doi:10.1057/jors.1969.103>), or cross-validated
weights. Cross validation for time series data with
user-supplied models and forecasting functions is also
supported to evaluate model accuracy.

Depends R (>= 3.1.1), forecast (>= 8.13), thief

Imports doParallel (>= 1.0.10), foreach (>= 1.4.3), ggplot2 (>=
2.2.0), purrr (>= 0.2.5), zoo (>= 1.7)

Suggests GMDH, knitr, rmarkdown, roxygen2, testthat

VignetteBuilder knitr

License GPL-3

URL https://gitlab.com/dashaub/forecastHybrid,

https://github.com/ellisp/forecastHybrid

BugReports https://github.com/ellisp/forecastHybrid/issues

LazyData true

RoxygenNote 7.1.1

ByteCompile true

NeedsCompilation no

Encoding UTF-8

Repository https://ellisp.r-universe.dev

RemoteUrl https://github.com/ellisp/forecasthybrid

RemoteRef HEAD

RemoteSha 53d79a9478e788073ba8dd0af9871143ca872b0a

1

https://doi.org/10.1057/jors.1969.103
https://gitlab.com/dashaub/forecastHybrid
https://github.com/ellisp/forecastHybrid
https://github.com/ellisp/forecastHybrid/issues

2 accuracy.cvts

Contents

accuracy.cvts . 2
accuracy.hybridModel . 3
checkCVArguments . 4
checkModelArgs . 4
checkParallelArguments . 5
cvts . 5
extractForecasts . 8
fitted.hybridModel . 9
forecast.hybridModel . 9
forecast.thetam . 11
getModel . 12
getModelName . 13
hybridModel . 13
is.hybridModel . 16
plot.hybridModel . 16
plot.thetam . 17
plotFitted . 18
plotModelObjects . 19
prepareTimeseries . 19
print.hybridModel . 20
removeModels . 20
residuals.hybridModel . 21
summary.hybridModel . 21
thetam . 22
thiefModel . 23
tsCombine . 24
tsPartition . 25
tsSubsetWithIndices . 25
unwrapParallelModels . 26

Index 27

accuracy.cvts Accuracy measures for cross-validated time series

Description

Returns range of summary measures of the cross-validated forecast accuracy for cvts objects.

Usage

S3 method for class 'cvts'
accuracy(object, ..., f = NULL)

accuracy.hybridModel 3

Arguments

object a cvts objected created by cvts.

... other arguments (ignored).

f Deprecated. Please use ‘object‘ instead.

Details

Currently the method only implements ME, RMSE, and MAE. The accuracy measures MPE, MAPE, and
MASE are not calculated. The accuracy is calculated for each forecast horizon up to maxHorizon

Author(s)

David Shaub

accuracy.hybridModel Accuracy measures for hybridModel objects

Description

Accuracy measures for hybridModel objects.

Usage

S3 method for class 'hybridModel'
accuracy(object, individual = FALSE, ..., f = NULL)

Arguments

object the input hybridModel.

individual if TRUE, return the accuracy of the component models instead of the accuracy
for the whole ensemble model.

... other arguments (ignored).

f Deprecated. Please use ‘object‘ instead.

Details

Return the in-sample accuracy measures for the component models of the hybridModel

Value

The accuracy of the ensemble or individual component models.

Author(s)

David Shaub

4 checkModelArgs

See Also

accuracy

checkCVArguments Validate that CV window parameters are valid

Description

Validate that CV window parameters are valid

Usage

checkCVArguments(x, windowSize, maxHorizon)

Arguments

x the input time series.

windowSize length of the window to build each model. When rolling == FALSE, the each
model will be fit to a time series of this length, and when rolling == TRUE the
first model will be fit to a series of this length and grow by one each iteration.

maxHorizon maximum length of the forecast horizon to use for computing errors.

checkModelArgs Helper function to test all the model arguments (e.g. a.args, e.args,
etc)

Description

Helper function to test all the model arguments (e.g. a.args, e.args, etc)

Usage

checkModelArgs(modelArguments, models)

Arguments

modelArguments A list of containing the model arguments

models A character vector containing all the model codes

checkParallelArguments 5

checkParallelArguments

Helper function to check the that the parallel arguments are valid

Description

Helper function to check the that the parallel arguments are valid

Usage

checkParallelArguments(parallel, num.cores)

Arguments

parallel A logic to indicate if parallel processing should be used

num.cores An integer for the number of threads to use

cvts Cross validation for time series

Description

Perform cross validation on a time series.

Usage

cvts(
x,
FUN = NULL,
FCFUN = NULL,
rolling = FALSE,
windowSize = 84,
maxHorizon = 5,
horizonAverage = FALSE,
xreg = NULL,
saveModels = ifelse(length(x) > 500, FALSE, TRUE),
saveForecasts = ifelse(length(x) > 500, FALSE, TRUE),
verbose = TRUE,
num.cores = 2L,
extraPackages = NULL,
...

)

6 cvts

Arguments

x the input time series.

FUN the model function used. Custom functions are allowed. See details and exam-
ples.

FCFUN a function that process point forecasts for the model function. This defaults to
forecast. Custom functions are allowed. See details and examples. See details.

rolling should a rolling procedure be used? If TRUE, non-overlapping windows of size
maxHorizon will be used for fitting each model. If FALSE, the size of the dataset
used for training will grow by one each iteration.

windowSize length of the window to build each model. When rolling == FALSE, the each
model will be fit to a time series of this length, and when rolling == TRUE the
first model will be fit to a series of this length and grow by one each iteration.

maxHorizon maximum length of the forecast horizon to use for computing errors.

horizonAverage should the final errors be an average over all forecast horizons up to maxHorizon
instead of producing metrics for each individual horizon?

xreg External regressors to be used to fit the model. Only used if FUN accepts xreg
as an argument. FCFUN is also expected to accept it (see details)

saveModels should the individual models be saved? Set this to FALSE on long time series to
save memory.

saveForecasts should the individual forecast from each model be saved? Set this to FALSE on
long time series to save memory.

verbose should the current progress be printed to the console?

num.cores the number of cores to use for parallel fitting. If the underlying model that is
being fit also utilizes parallelization, the number of cores it is using multiplied by
‘num.cores‘ should not exceed the number of cores available on your machine.

extraPackages on Windows if a custom ‘FUN‘ or ‘FCFUN‘ is being used that requires loaded,
these can be passed here so that they can be passed to parallel socket workers

... Other arguments to be passed to the model function FUN

Details

Cross validation of time series data is more complicated than regular k-folds or leave-one-out cross
validation of datasets without serial correlation since observations xt and xt+n are not independent.
The cvts() function overcomes this obstacle using two methods: 1) rolling cross validation where
an initial training window is used along with a forecast horizon and the initial window used for
training grows by one observation each round until the training window and the forecast horizon
capture the entire series or 2) a non-rolling approach where a fixed training length is used that is
shifted forward by the forecast horizon after each iteration.

For the rolling approach, training points are heavily recycled, both in terms of used for fitting and
in generating forecast errors at each of the forecast horizons from 1:maxHorizon. In contrast, the
models fit with the non-rolling approach share less overlap, and the predicted forecast values are
also only compared to the actual values once. The former approach is similar to leave-one-out cross
validation while the latter resembles k-fold cross validation. As a result, rolling cross validation

cvts 7

requires far more iterations and computationally takes longer to complete, but a disadvantage of the
non-rolling approach is the greater variance and general instability of cross-validated errors.

The FUN and FCFUN arguments specify which function to use for generating a model and forecasting,
respectively. While the functions from the "forecast" package can be used, user-defined functions
can also be tested, but the object returned by FCFUN must accept the argument h and contain the
point forecasts out to this horizon h in slot $mean of the returned object. An example is given with
a custom model and forecast.

For small time series (default length <= 500), all of the individual fit models are included in the
final cvts object that is returned. This can grow quite large since functions such as auto.arima will
save fitted values, residual values, summary statistics, coefficient matrices, etc. Setting saveModels
= FALSE can be safely done if there is no need to examine individual models fit at every stage of
cross validation since the forecasts from each fold and the associated residuals are always saved.

External regressors are allowed via the xreg argument. It is assumed that both FUN and FCFUN
accept the xreg parameter if xreg is not NULL. If FUN does not accept the xreg parameter a warning
will be given. No warning is provided if FCFUN does not use the xreg parameter.

Author(s)

David Shaub

See Also

accuracy.cvts

Examples

series <- subset(AirPassengers, end = 50)
cvmod1 <- cvts(series, FUN = snaive,

windowSize = 25, maxHorizon = 12)
accuracy(cvmod1)

We can also use custom model functions for modeling/forecasting
stlmClean <- function(x) stlm(tsclean(x))
series <- subset(austres, end = 38)
cvmodCustom <- cvts(series, FUN = stlmClean, windowSize = 26, maxHorizon = 6)
accuracy(cvmodCustom)

Use the rwf() function from the "forecast" package.
This function does not have a modeling function and
instead calculates a forecast on the time series directly
series <- subset(AirPassengers, end = 26)
rwcv <- cvts(series, FCFUN = rwf, windowSize = 24, maxHorizon = 1)

Don't return the model or forecast objects
cvmod2 <- cvts(USAccDeaths, FUN = stlm,

saveModels = FALSE, saveForecasts = FALSE,
windowSize = 36, maxHorizon = 12)

If we don't need prediction intervals and are using the nnetar model, turning off PI

8 extractForecasts

will make the forecasting much faster
series <- subset(AirPassengers, end=40)
cvmod3 <- cvts(series, FUN = hybridModel,

FCFUN = function(mod, h) forecast(mod, h = h, PI = FALSE),
rolling = FALSE, windowSize = 36,
maxHorizon = 2)

extractForecasts Extract cross validated rolling forecasts

Description

Obtain cross validated forecasts when rolling cross validation is used. The object is not inspected
to see if it was fit using a rolling origin

Usage

extractForecasts(cv, horizon = 1)

Arguments

cv An object of class cvts

horizon The forecast horizon from each fold to extract

Details

Combine the cross validated forecasts fit with a rolling origin. This may be useful to visualize and
investigate the cross validated performance of the model

Value

Forecasts computed via a rolling origin

Author(s)

Ganesh Krishnan

Examples

cv <- cvts(AirPassengers, FUN = stlm, FCFUN = forecast,
rolling = TRUE, windowSize = 134, horizon = 2)

extractForecasts(cv)

fitted.hybridModel 9

fitted.hybridModel Extract Model Fitted Values

Description

Extract the model fitted values from the hybridModel object.

Usage

S3 method for class 'hybridModel'
fitted(object, individual = FALSE, ...)

Arguments

object the input hybridModel.
individual if TRUE, return the fitted values of the component models instead of the fitted

values for the whole ensemble model.
... other arguments (ignored).

Value

The fitted values of the ensemble or individual component models.

See Also

accuracy

forecast.hybridModel Hybrid forecast

Description

Forecast method for hybrid models.

Usage

S3 method for class 'hybridModel'
forecast(
object,
h = ifelse(object$frequency > 1, 2 * object$frequency, 10),
xreg = NULL,
level = c(80, 95),
PI = TRUE,
fan = FALSE,
PI.combination = c("extreme", "mean"),
...

)

10 forecast.hybridModel

Arguments

object a hybrid time series model fit with hybridModel.

h number of periods for forecasting. If xreg is used, h is ignored and the number
of forecast periods is set to the number of rows of xreg.

xreg future values of regression variables (for use if one of the ensemble methods
used in creating the hybrid forecast was auto.arima, nnetar, or stlm and the
model(s) used xreg in the fit). It should be supplied as a matrix.

level confidence level for prediction intervals. This can be expressed as a decimal
between 0.0 and 1.0 or numeric between 0 and 100.

PI should prediction intervals be produced? If a nnetar model is in the ensemble,
this can be quite slow, so disabling prediction intervals will speed up the forecast
generation. If FALSE, the arguments level and fan are ignored.

fan if TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

PI.combination Method for combining the prediction intervals from each of the forecasts. Sup-
plying "mean" will simply average each of the lower/upper intervals from each
model without using the model weights used for the point forecasts. The default
value "extreme" will take the most pessimistic intervals (i.e. the highest upper
interval from all the component models and the lowest prediction interval from
all of the component models’).

... other arguments passed to the individual forecast generic methods.

Details

if xreg was used in constructing the hybridModel, it must also be passed into forecast.hybridModel.

While prediction intervals are produced for the final ensemble forecast model, these should be
viewed conservatively as insights to the forecast’s uncertainty. Currently these are constructed
using the most extreme interval from each component model for each horizon, so the composite
prediction intervals do not have statistical guarantees of asymptotic efficiency. More sophisticated
and rigorous techniques are planned, however, particularly when cross validation approaches are
used.

Value

An object of class forecast.

Author(s)

David Shaub

See Also

hybridModel

forecast.thetam 11

Examples

Not run:
mod <- hybridModel(AirPassengers)
fc <- forecast(mod)

View the point forecasts
fc$mean

View the upper prediction interval
fc$upper

View the lower prediction interval
fc$lower

Plot the forecast
plot(fc)

End(Not run)

forecast.thetam Forecast using a Theta model

Description

Returns forecasts and other information for univariate Theta "models"

Usage

S3 method for class 'thetam'
forecast(
object,
h = ifelse(object$m > 1, 2 * object$m, 10),
level = c(80, 95),
fan = FALSE,
...

)

Arguments

object An object of class "thetam. Usually the result of a call to link{thetam}.

h Number of periods for forecasting

level Confidence level for prediction intervals

fan If TRUE, level is set to seq(51, 99, by = 3). This is suitable for fan plots.

... Ignored

Value

An object of class forecast

12 getModel

Author(s)

Peter Ellis

See Also

thetam

Examples

mod1 <- thetam(Nile)
fc1 <- forecast(mod1)
plot(fc1)

getModel Return a forecast model function for a given model character

Description

Convert the single-letter representation used in the "forecastHybrid" package to the corresponding
model function from the "forecast" package

Usage

getModel(modelCharacter)

Arguments

modelCharacter a single character representing one of the models from the models argument
passed to hybridModel

See Also

hybridModel

Examples

forecastHybrid:::getModel("a")
forecastHybrid:::getModel("s")
forecastHybrid:::getModel("z")

getModelName 13

getModelName Translate character to model name

Description

Convert the single-letter representation used in the "forecastHybrid" package to the corresponding
function name from the "forecast" package

Usage

getModelName(modelCharacter)

Arguments

modelCharacter a single character representing one of the models from the models argument
passed to hybridModel

See Also

hybridModel

Examples

forecastHybrid:::getModelName("a")
forecastHybrid:::getModelName("s")
forecastHybrid:::getModelName("z")

hybridModel Hybrid time series modeling

Description

Create a hybrid time series model with two to five component models.

Usage

hybridModel(
y,
models = "aefnst",
lambda = NULL,
a.args = NULL,
e.args = NULL,
n.args = NULL,
s.args = NULL,
t.args = NULL,
x.args = NULL,

14 hybridModel

z.args = NULL,
weights = c("equal", "insample.errors", "cv.errors"),
errorMethod = c("RMSE", "MAE", "MASE"),
rolling = FALSE,
cvHorizon = frequency(y),
windowSize = 84,
horizonAverage = FALSE,
parallel = FALSE,
num.cores = 2L,
verbose = TRUE

)

Arguments

y A numeric vector or time series.

models A character string of up to seven characters indicating which contributing mod-
els to use: a (auto.arima), e (ets), f (thetam), n (nnetar), s (stlm), t (tbats),
and z (snaive).

lambda Box-Cox transformation parameter. Ignored if NULL. Otherwise, data trans-
formed before model is estimated.

a.args an optional list of arguments to pass to auto.arima. See details.

e.args an optional list of arguments to pass to ets. See details.

n.args an optional list of arguments to pass to nnetar. See details.

s.args an optional list of arguments to pass to stlm. See details.

t.args an optional list of arguments to pass to tbats. See details.

x.args an optional list of arguments to pass to arfima. See details.

z.args an optional list of arguments to pass to snaive. See details.

weights method for weighting the forecasts of the various contributing models. De-
faults to equal, which has shown to be robust and better in many cases than
giving more weight to models with better in-sample performance. Cross vali-
dated errors–implemented with link{cvts} should produce the best forecast,
but the model estimation is also the slowest. Note that extra arguments passed
in a.args, e.args, n.args, s.args, x.args, and t.args are not used during
cross validation. See further explanation in cvts. Weights utilizing in-sample
errors are also available but not recommended.

errorMethod method of measuring accuracy to use if weights are not to be equal. Root mean
square error (RMSE), mean absolute error (MAE) and mean absolute scaled error
(MASE) are supported.

rolling If weights = "cv.errors", this controls the use of rolling cross validation in
cvts()

cvHorizon If weights = "cv.errors", this controls which forecast to horizon to use for
the error calculations.

windowSize length of the window to build each model, only used when weights = "cv.errors".

hybridModel 15

horizonAverage If weights = "cv.errors", setting this to TRUE will average all forecast hori-
zons up to cvHorizon for calculating the errors instead of using the single hori-
zon given in cvHorizon.

parallel a boolean indicating if parallel processing should be used between models. Par-
allelization will still occur within individual models that support it and can be
controlled using a.args and t.args.

num.cores If parallel=TRUE, how many cores to use.

verbose Should the status of which model is being fit/cross validated be printed to the
terminal?

Details

The hybridModel function fits multiple individual model specifications to allow easy creation of
ensemble forecasts. While default settings for the individual component models work quite well in
most cases, fine control can be exerted by passing detailed arguments to the component models in
the a.args, e.args, n.args, s.args, x.args, and t.args lists. Note that if xreg is passed to the
a.args, n.args, or s.args component models it must now be passed as a matrix. In "forecastHy-
brid" versions earlier than 4.0.15 it would instead be passed in as a dataframe, but for consistency
with "forecast" v8.5 we now require a matrix with colnames

Characteristics of the input series can cause problems for certain types of models and parame-
ters. For example, stlm models require that the input series be seasonal; furthermore, the data must
include at least two seasons of data (i.e. length(y) >= 2 * frequency(y)) for the decomposition
to succeed. If this is not the case, hybridModel() will remove the stlm model so an error does not
occur. Similarly, nnetar models require that length(y) >= 2 * frequency(y), so these models
will be removed if the condition is not satisfied. The ets model does not handle a series well with
a seasonal period longer than 24 and will ignore the seasonality. In this case, hybridModel() will
also drop the ets model from the ensemble.

Value

An object of class hybridModel. The individual component models are stored inside of the object
and can be accessed for all the regular manipulations available in the forecast package.

Author(s)

David Shaub

See Also

forecast.hybridModel, auto.arima, ets, thetam, nnetar, stlm, tbats

Examples

Not run:

Fit an auto.arima, ets, thetam, nnetar, stlm, arfima, and tbats model
on the time series with equal weights
mod1 <- hybridModel(AirPassengers)

16 plot.hybridModel

plot(forecast(mod1))

Use an auto.arima, ets, and tbats model with weights
set by the MASE in-sample errors
mod2 <- hybridModel(AirPassengers, models = "aet",
weights = "insample.errors", errorMethod = "MASE")

Pass additional arguments to auto.arima() to control its fit
mod3 <- hybridModel(AirPassengers, models = "aens",
a.args = list(max.p = 7, max.q = 7, approximation = FALSE))

View the component auto.arima() and stlm() models
mod3$auto.arima
mod3$stlm

End(Not run)

is.hybridModel Test if the object is a hybridModel object

Description

Test if the object is a hybridModel object.

Usage

is.hybridModel(x)

Arguments

x the input object.

Value

A boolean indicating if the object is a hybridModel is returned.

plot.hybridModel Plot a hybridModel object

Description

Plot a representation of the hybridModel.

Usage

S3 method for class 'hybridModel'
plot(x, type = c("fit", "models"), ggplot = FALSE, ...)

plot.thetam 17

Arguments

x an object of class hybridModel to plot.

type if type = "fit", plot the original series and the individual fitted models. If
type = "models", use the regular plot methods from the component models, i.e.
plot.Arima, plot.ets, plot.tbats. Note: no plot methods exist for nnetar
and stlm objects, so these will not be plotted with type = "models".

ggplot should the autoplot function be used (when available) for the plots?

... other arguments passed to plot.

Details

For type = "fit", the original series is plotted in black. Fitted values for the individual component
models are plotted in other colors. For type = "models", each individual component model is
plotted. Since there is not plot method for stlm or nnetar objects, these component models are not
plotted.

Value

None. Function produces a plot.

Author(s)

David Shaub

See Also

hybridModel

Examples

Not run:
hm <- hybridModel(woolyrnq, models = "aenst")
plot(hm, type = "fit")
plot(hm, type = "models")

End(Not run)

plot.thetam Plot components from Theta model

Description

Produces a plot of the level components from the ETS model underlying a Theta model

Usage

S3 method for class 'thetam'
plot(x, ...)

18 plotFitted

Arguments

x Object of class "thetam".

... Other plotting parameters passed through to plot

Details

The "state" component of the plot comes from the model ets(..., model = "ANN") that was fit as
part of the theta method. The "seasonal" component is the multipliers from multiplicative classical
decomposition seasonal adjustment that is performed before the ets model is fit. The "linear"
component shows the direction and slope of drift that is used in the forecasting to come.

Value

None. Function produces a plot.

Author(s)

Peter Ellis

See Also

thetam

Examples

model <- thetam(wineind)
plot(model)

plotFitted Plot the fitted values of a hybridModel object

Description

Plot a fitted values of the hybridModel.

Usage

plotFitted(x, ggplot, ...)

Arguments

x an object of class hybridModel to plot.

ggplot should the autoplot function be used (when available) for the plots?

... other arguments passed to plot.

plotModelObjects 19

plotModelObjects Plot the component models of a hybridModel object

Description

Plot a representation of the hybridModel.

Usage

plotModelObjects(x, ggplot, ...)

Arguments

x an object of class hybridModel to plot.

ggplot should the autoplot function be used (when available) for the plots?

... other arguments passed to plot.

prepareTimeseries Helper function to validate and clean the input time series

Description

Helper function to validate and clean the input time series

Usage

prepareTimeseries(y)

Arguments

y The input time series

20 removeModels

print.hybridModel Print information about the hybridModel object

Description

Print information about the hybridModel object.

Usage

S3 method for class 'hybridModel'
print(x, ...)

Arguments

x the input hybridModel object.

... other arguments (ignored).

Details

Print the names of the individual component models and their weights.

removeModels Helper function to remove models that require more data

Description

Helper function to remove models that require more data

Usage

removeModels(y, models)

Arguments

y The input time series

models The model codes to test

residuals.hybridModel 21

residuals.hybridModel Extract Model Residuals

Description

Extract the model residuals from the hybridModel object.

Usage

S3 method for class 'hybridModel'
residuals(object, individual = FALSE, ...)

Arguments

object The input hybridModel.

individual If TRUE, return the residuals of the component models instead of the residuals
for the whole ensemble model.

... Other arguments (ignored).

Value

The residuals of the ensemble or individual component models.

See Also

accuracy

summary.hybridModel Print a summary of the hybridModel object

Description

Print a summary of the hybridModel object

Usage

S3 method for class 'hybridModel'
summary(x)

Arguments

x the input hybridModel object.

Details

Print the names of the individual component models and their weights.

22 thetam

thetam Theta method ’model’

Description

Create a model object as an interim step to a theta method forecast.

Usage

thetam(y)

Arguments

y A numeric vector or time series.

Details

This fits an exponential smoothing state space model with model = 'ANN' to y, having first per-
formed classic multiplicative seasonal adjustment. A drift value is also calculated by lsfit(0:(length(y)
- 1), y)$coef[2] / 2. In combination with forecast.thetam(), this provides identical results to
forecast::thetaf(...). The purpose of splitting it into a ‘model‘ and ‘forecast‘ functions is to
make the approach consistent with other modeling / forecasting approaches used in hybridModel().

Value

An object of class thetam

Author(s)

Peter Ellis

See Also

forecast.thetam

Examples

mod1 <- thetam(Nile)
plot(mod1)

thiefModel 23

thiefModel Forecast ensemble using THieF

Description

Create a forecast ensemble using the theif() model

Usage

thiefModel(
y,
models = "aefnt",
h = 2 * frequency(y),
comb = c("struc", "mse", "ols", "bu", "shr", "sam"),
verbose = FALSE

)

Arguments

y the input time series

models the models to use. These are specified the same way as hybridModel

h the forecast horizon

comb the combination method to use by thief

verbose if TRUE, report the fitting status

Details

Use the "thief" package method for reconciling forecasts across the temporal hierarchy. The base
models to be included in the ensemble are the same as those in hybridModel, but the stlm model
cannot be included since it requires seasonal data.

Author(s)

David Shaub

See Also

thief

hybridModel

Examples

series <- subset(woolyrnq, end = 8)
thiefModel(series, models = "fz")

24 tsCombine

tsCombine Combine multiple sequential time series

Description

Combine multiple ts objects into a single ts object. It is assumed that the ts objects provided are
sequential. In other words, it is assumed that a valid time series object can actually be constructed
from the provided objects. The start time and frequency of the combined object will correspond to
the start time and frequency of the first provided object

Usage

tsCombine(...)

Arguments

... ts objects to combine

Details

Combine sequential time series objects into a single time series object. This might be useful, for
example, when you want to combine the training and validation time series objects for plotting.
The function assumes that the provided objects have no overlap. For example, a valid argument
set would have two time series with periods from Jan-Dec 2015 and Jan-Dec 2016. An invalid
set would be two time series t1 and t2 with periods from Jan-Dec 2015 and Aug 2015-Dec 2016
respectively. In that case, there is overlap between t1 and t2. The return value will depend on the
order in which the arguments are provided. If the function call is tsCombine(t1, t2), the overlapping
portion of t1 and t2 (Aug-Dec 2015 in this example), would have values from t1 as long as they are
not NA. If the call is tsCombine(t2, t1), it will have values from t2 as long as they are not NA.

Value

A combined ts object generated from the individual ts objects

Author(s)

Ganesh Krishnan

Examples

tsCombine(window(AirPassengers, end = c(1951, 12)), window(AirPassengers, start = c(1952, 1)))

tsPartition 25

tsPartition Generate training and test indices for time series cross validation

Description

Training and test indices are generated for time series cross validation. Generated indices are based
on the training windowSize, forecast horizons and whether a rolling or non-rolling cross validation
procedure is desired.

Usage

tsPartition(x, rolling, windowSize, maxHorizon)

Arguments

x A time series

rolling Should indices be generated for a rolling or non-rolling procedure?

windowSize Size of window for training

maxHorizon Maximum forecast horizon

Value

List containing train and test indices for each fold

Author(s)

Ganesh Krishnan

Examples

tsPartition(AirPassengers, rolling = TRUE, windowSize = 10, maxHorizon = 2)

tsSubsetWithIndices Subset time series with provided indices

Description

Use provided indices to subset a time series. The provided indices must be contiguous

Usage

tsSubsetWithIndices(x, indices)

26 unwrapParallelModels

Arguments

x A time series object

indices A contiguous vector of indices to use for subsetting

Value

A time series object appropriately subsetted using provided indices

Author(s)

Ganesh Krishnan

Examples

tsSubsetWithIndices(AirPassengers, c(3:10))

unwrapParallelModels Helper function used to unpack the fitted model objects from a list

Description

Helper function used to unpack the fitted model objects from a list

Usage

unwrapParallelModels(fitModels, expandedModels)

Arguments

fitModels A list containing the models to include in the ensemble

expandedModels A character vector from the models argument of hybridModel

Details

See usage inside the hybridModel function.

See Also

hybridModel

Index

accuracy, 4, 9, 21
accuracy.cvts, 2, 7
accuracy.hybridModel, 3
arfima, 14
auto.arima, 14, 15
autoplot, 17–19

checkCVArguments, 4
checkModelArgs, 4
checkParallelArguments, 5
cvts, 3, 5, 14

ets, 14, 15
extractForecasts, 8

fitted.hybridModel, 9
forecast, 6, 10
forecast.hybridModel, 9, 15
forecast.thetam, 11, 22

getModel, 12
getModelName, 13

hybridModel, 10, 12, 13, 13, 17, 23, 26

is.hybridModel, 16

nnetar, 14, 15

plot, 17–19
plot.Arima, 17
plot.ets, 17
plot.hybridModel, 16
plot.tbats, 17
plot.thetam, 17
plotFitted, 18
plotModelObjects, 19
prepareTimeseries, 19
print.hybridModel, 20

removeModels, 20

residuals.hybridModel, 21

snaive, 14
stlm, 14, 15
summary.hybridModel, 21

tbats, 14, 15
thetam, 12, 14, 15, 18, 22
thief, 23
thiefModel, 23
tsCombine, 24
tsPartition, 25
tsSubsetWithIndices, 25

unwrapParallelModels, 26

27

	accuracy.cvts
	accuracy.hybridModel
	checkCVArguments
	checkModelArgs
	checkParallelArguments
	cvts
	extractForecasts
	fitted.hybridModel
	forecast.hybridModel
	forecast.thetam
	getModel
	getModelName
	hybridModel
	is.hybridModel
	plot.hybridModel
	plot.thetam
	plotFitted
	plotModelObjects
	prepareTimeseries
	print.hybridModel
	removeModels
	residuals.hybridModel
	summary.hybridModel
	thetam
	thiefModel
	tsCombine
	tsPartition
	tsSubsetWithIndices
	unwrapParallelModels
	Index

